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Abstract
Microarrays allow the expression patterns of tens of
thousands of genes to be monitored in parallel.  The
technique has been used for gene expression profiling
of normal and malignant cells.  The major goal of these
studies is to identify a subset of informative genes for
class prediction as well as to uncover classes that were
previously unknown (class discovery).  The continued
success of the methodology depends on the
improvement of quantitative aspects of the microarray
technology and on the development of computational
tools that can mine the resulting large data sets.

Introduction
With large human expressed sequence tag (EST)
sequence sets now available and with advances in
microarray technology, it has become possible to
monitor the genome-wide gene expression patterns of
biological systems.  Recently, microarray technology
has been used to profile the global gene expression
patterns of normal and transformed human cells in
several tumors including colon (Alon et al., 1999),
leukemia (Golub et al.1999), prostate (Bubendorf et al.,
1999), breast (Perou et al., 2000), lymphoma (Alizadeh
et al., 2000), and melanoma (Bittner et al., 2000).
Microarrays have also been used for gene expression
profiling of the NCI’s 60 tumor cell lines (Ross et al.,
2000).  These studies may provide mechanistic insight
about cell maltransformation and help in identifying
biomarkers for cancer classification (molecular
diagnosis).
     While microarrays have been successfully used in
gene expression profiling of tumor cells/tissues,

successful application of the microarray technology in
cancer classification may rely on data mining tools.
This is because, of the many thousands of genes
examined, only a fraction may present distinct profiles
for different classes of samples (e.g. tumor vs. normal).
Thus, it is critical to have computational tools that are
capable of identifying a subset of informative genes
embedded in a large data set that is contaminated with
high-dimensional noise.  Although many data analysis
approaches have been proposed, few are designed
specifically for class prediction and class discovery.
Herein, we briefly review the structure of microarray
expression data and these analysis methods.

Classification methods
Pattern recognition methods can be divided into two
categories: supervised and unsupervised.  A supervised
method is a technique that one uses to develop a
predictor or classification rule using a learning set with
known classification.  The predictor is subsequently
used to classify unknown objects. Methods in this
category include k-nearest neighbors (KNN) (Li et al.,
2000a & 2000b), support vector machines (SVM)
(Cortes & Vapnik, 1995), and linear discriminant
analysis (LDA) (Vandeginste et al., 1998).
Unsupervised pattern recognition largely refers to
clustering analysis for which class information is not
known or not required.  Unsupervised methods include
hierarchical clustering (Eisen et al., 1998), K-mean
clustering (Tavazoie et al., 1999), and self-organizing
map (Kohonen, 1999).  Note that the KNN method can
also be unsupervised.

Microarray data structure
1). Large number of genes and few samples
Unlike the conventional data sets that consist of a large
number of observations (samples) and few parameters,
microarray data consist of a large number of genes
(parameters) and a small number of samples.  When
building a class predictor using a supervised pattern
recognition method, many distinct class predictors may
be obtained.  In other words, several subsets of genes
that can distinguish between different classes of samples
may exist.  Such subsets may be regarded as competing
near-optimal solutions.  It is possible that the solution
space is relatively flat and that a "global" optimal
solution may not exist.  Consequently, it becomes
important to identify many subsets of genes that can
potentially discriminate between different classes of
samples so that the relative importance of individual
genes for sample classification can be assessed through
statistical analysis of the near-optimal solutions.

2). Multivariate structures
In many classification problems, a multi-dimensional
space is needed for sample separation.  In a hypothetical
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Figure 1.  Scatter plots of hypothetical expression level of gene 1 vs. gene 2.  Two different classes of samples are
shown (filled cycles and triangles).  Panel A illustrates that the two genes are jointly discriminative, but non-
discriminative singly.  Panel B shows that one class of samples (filled cycles) has two distinct subcategories.  A
simple approach like the t-statistic that treats these samples as a whole would fail to identify the two genes that are
apparently discriminative.

example shown in Figure 1a, separation between the
two classes of samples is apparent.  However,
considerable overlap occurs when the samples are
projected onto either of the two dimensions.  Thus, the
two genes are jointly discriminative, but not
discriminative singly.  This illustrates that a set of genes
should be considered simultaneously for their joint
ability to discriminate, not individually.  Recently,
multivariate approaches such as principal component
analysis (PCA) have been used in tumor classification
(Alaiya et al., 2000) based on gene expression data.
Also, Kim et al. (2000) has used a multivariate
approach to elucidate gene relationships.

3). Sample heterogeneity
Intuitively, a simple approach such as the student t-
statistic may be applied to identify the differentially
expressed genes.  Essentially, the t-statistic approach
searches for genes that deliver the largest difference in
average intensity (expression level) between different
classes of samples (e.g. normal vs. tumor samples) and
the smallest variation within each class.  While it is
reasonable that genes with a large t-statistic would be
discriminative, genes with a small magnitude t-statistic
may also be discriminative (Fig. 1b).  For instance,
certain genes could be highly differentially expressed in
one subcategory of a tumor but not in another.  Samples
of the same class may be at different developmental
stages.  Such genes that could well be informative may
not be identified using the t-statistic as the selection
criterion, since the t-statistic could be small.  Scenarios
of this nature are not unlikely, since tumors can be
heterogeneous (Lengauer et al., 1998).  Thus,
computational tools that can work well in the presence

of sample heterogeneity are preferred.  Subsequently,
hidden subcategories in the sample may be discovered
and may prove to be etiologically or prognostically
important.

Class prediction
Methods for selecting a subset of informative
(discriminative) genes for sample classification have
recently been proposed (Golub et al., 1999, Ben-Dor et
al., 2000, Li et al., 2000a & 2000b).  Golub et al.
(1999) successfully applied neighborhood analysis to
identify a subset of genes that discriminates between
acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL), using a separation measure similar to
the t-statistic.  The 50 genes that best distinguish AML
from ALL in 38 training set samples were chosen as a
class predictor that correctly classified 36 of the 38
training set samples.  When these genes were
subsequently used to predict the class membership of
new leukemia cases, 29 of the 34 test set samples were
correctly classified with high confidence.

     Recently, Ben-Dor et al. (2000) applied several
classification methods (both supervised and
unsupervised) to a colon (Alon et al., 1999) and an
ovarian data set including the KNN (without gene
selection) and SVM (after gene selection).  A boosting
technique (Freund & Schapire, 1997) was used to
search for a threshold (expression level) for each gene
that would maximally discriminate between two types
of samples (e.g. normal vs. tumor).  Those that gave the
smallest classification errors were taken as the relevant
genes.  All samples were used to obtain the relevant
genes using the leave-one-out cross-validation
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procedure as a measure of prediction strength (no test
set was employed).

     Although differing in technical details, both
approaches (Golub et al., 1999, Ben-Dor et al., 2000)
identify informative genes by examining one gene at a
time (univariate), that is, samples were compared in
single dimensions.  Furthermore, both approaches
implicitly assume that genes are similarly expressed
within each type of sample.  This could be problematic
if subtypes exist so that the relevant genes are not
uniformly expressed (as in Figure 1b).

     Recently, we proposed a multi-dimensional
classification method that not only selects a small subset
of genes that jointly discriminate between different
classes of samples, but also assesses the relative
predictive importance of all genes for sample
classification.  Details of the method (Li et al., 2000a)
and a study of the sensitivity to choices of various
parameters of the method have been reported (Li et al.,
2000b).  In brief, the method employs a non-parametric
pattern recognition approach, the k-nearest neighbors
(KNN), and a searching tool, a genetic algorithm (GA).
The GA is used to search high-dimensional space, since
selecting a subset of genes from a large gene pool is a
combinatorial problem.  For instance, the number of
ways of selecting 50 genes from 2000 is approximately
10100.  The KNN method is used as the classification
tool that distinguishes between discriminative and non-
discriminative genes.  Simply speaking, we employ the
GA to choose a relatively few subsets of genes (from
many combinations) for testing with KNN as the
evaluation tool. The GA/KNN method searches for
many subsets of genes that potentially discriminate
between different classes of samples using the training
set.  When many such subsets of genes have been
obtained, the relative importance of genes for sample
classification is assessed by examining the frequency of
gene memberships in those near-optimal subsets.  The
genes can then be ranked based on the frequency of
their selection.  We divide the data sets, whenever
allowed, into a training and a test set.  The training set
is used to build a class predictor while the test set is
used to validate the class predictor.

     We have applied the GA/KNN method to colon
cancer data (Alon et al., 1999), lymphoma data
(Alizahel et al., 2000)
(http://llmpp.nih.gov/lymphoma/), and leukemia data
(Golub et al., 1999) (http://llmpp.nih.gov/lymphoma/).
The results have been reported (Li et al., 2000a &
2000b) and are available on the web
(http://chun.nihes.nih.gov/~leping/).  For all data
analyzed, “unknown” samples (in the test set) were
largely classified correctly using the 50 top-ranked

genes.  For the colon data set, the GA/KNN method
found that three of the tumor specimens (T30, T33, and
T36) and two of the normal specimens (N34 and N36)
were predicted to be in the wrong set.  This prediction
was, however, later confirmed using pathology and the
anomalies appear to have resulted from sample
contamination (personal communication with Dr. Uri
Alon).  For the leukemia set (Golub et al., 1999), the
GA/KNN correctly classified all training set samples
and all but one of the 34 test set samples (AML-66)
using the 50 top-ranked genes.  Furthermore, the set of
discriminative genes revealed the existence of two
subtypes within the ALL class without applying prior
knowledge.

Class discovery
Current computational tools for class discovery based
on gene expression data have been largely limited to
clustering analysis.  In a paper by Alizadeh et al.
(2000), cDNA microarrays were used for gene
expression profiling of a set of normal and malignant
lymphocyte samples.  Hierarchical clustering analysis
(Eisen et al., 1998) suggested that B-cell differentiation
genes may be used to subdivide diffuse large B-cell
lymphomas (DLBCL).  Subsequent clustering analysis
using those genes has led to the discovery of two
distinct DLBCLs: germinal center B-like and activated
B-like DLBCL (Alizadeh et al., 2000).  The
subclassification of DLBCL appears to correlate with
the overall survival of the patients (Alizadeh et al.,
2000).  Similar profiling studies on cutaneous malignant
melanoma (Bittner et al., 2000) and breast tumors
(Perou et al., 2000) have been reported.

     In addition to AML and ALL class prediction, Golub
et al. (1999) also applied self-organizing maps (SOM)
for class discovery.  Distinct subcategories of AML and
ALL were identified.  Similarly, the GA/KNN method
(Li et al., 2000a) was also able to uncover clinically
distinct subtypes within ALL without prior knowledge.

Conclusions
Gene profiling has been shown to be promising in
aiding cancer classification.  Methods for class
prediction and class discovery based on gene expression
data have been proposed (Golub et al., 1999, Ben-Dor
et al., 2000, Bittner et al., 2000, Li et al., 2000a &
2000b, Perou et al., 2000).  Most of the approaches
utilize methodologies that were developed many years
ago.  These methods have been shown to be useful in
mining complex microarray data.  Regardless of the
pattern recognition method used, it is important to
understand the strengths and limitations of the method
as well as the data structure to which the method is
applied.  It may not be difficult to construct a class
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predictor when sample class membership is known.
Supervised pattern recognition methods may be applied.

     It is much more challenging if the class membership
is unknown while simultaneously determining a class
predictor (class discovery).  Currently, the main
approach used for class discovery is clustering analysis
using either a subset of genes or all genes.  Generally, a
subset of informative genes, instead of all genes, should
be used for class discovery, since not all genes are
relevant to class distinction.  Without knowing the
classifications, it is difficult to identify the subset of
informative genes.  A solution to such a problem is
possible and work is in progress.  The methods
ultimately developed should be useful not only for
cancer data sets, but also for those from environmental
or pharmaceutical studies for which class membership is
not totally clear.  In the latter case, compounds of the
same class may not behave in the same manner.  The
class relationship may well change as a function of dose
and/or exposure time.  Thus, methods that can identify a
small subset of (signature) genes that can jointly distinct
one class from another should be valuable.

     As the microarray technology becomes more
quantitative and the computational tools that mine the
resulting large data sets become mature, tumor
classification and class discovery using gene expression
profiling may revolutionize cancer biology.
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